MATH2050C Selected Solution to Assignment 12

Section 5.4 no. 3, 4, 6, 7, 8, 10, 15. Section 5.6 no 3,4.

Section 5.4

(3) (a) $f(x) = x^2$ is not uniformly continuous on $[0, \infty)$. Pick $a_n = n$ and $b_n = n + 1/n$. Then $|a_n - b_n| = 1/n \to 0$ but $|f(a_n) - f(b_n)| = 2 + 1/n^2 > 2$.

Note. In general, any polynomial of degree ≥ 2 is not uniformly on any unbounded interval. (Of course, it is uc on every bounded interval.)

(b) $g(x) = \sin 1/x$ on $(0, \infty)$. Pick $a_n = 1/(2n\pi)$ and $b_n = 1/(2n+1/2)\pi$. Then $|a_n - b_n| \to 0$ but $|\sin 1/a_n - \sin 1/b_n| = |0 - 1| = 1$ for all n.

(4) Observing f is decreasing, on an interval of the form $I = [x, x + \delta], x \ge 0$, its oscillation is given by

$$\operatorname{osc}_{I} f = \frac{1}{1+x^{2}} - \frac{1}{1+(x+\delta)^{2}} = \frac{2\delta x + \delta^{2}}{(1+x^{2})(1+(x+\delta)^{2})}$$

For $\delta \leq 1$,

$$\frac{2\delta x + \delta^2}{(1+x^2)(1+(x+\delta)^2)} \le \frac{2\delta x + \delta^2}{1+x^2} \le 2\delta ,$$

as $2x \leq 1 + x^2$ and $\delta^2 \leq h$. Hence given $\varepsilon > 0$, pick $\delta = \min\{1, \varepsilon/2\}$, we have $\operatorname{osc}_f \leq 2\delta \leq \varepsilon$, on $[x, x + \delta], x \geq 0$. By the Oscillation Theorem f is uniformly continuous on $[0, \infty)$.

(6) Let f be bounded by M and g by K. Use

$$|f(x)g(x) - f(y)g(y)| = |(f(x) - f(y))g(x) + f(y)(g(x) - g(y))| \le K|f(x) - f(y)| + M|g(x) - g(y)|.$$

(7) The functions x and sin x are uniformly continuous on $(-\infty, \infty)$, but its product $h(x) = x \sin x$ is not. Let $a_n = 2n\pi$ and $b_n = (2n + 1/n)\pi$ so $|a_n - b_n| \to 0$. On the other hand,

$$\frac{\sin\left(2n\pi + \frac{1}{n}\pi\right)}{\pi/n} = \frac{\sin\frac{\pi}{n}}{\pi/n} \to 1 , \quad \text{as } n \to \infty .$$

Thus,

 $|b_n \sin b_n - a_n \sin a_n| = |b_n \sin b_n| \to 2\pi^2$, as $n \to \infty$.

(8) Same as the proof of the composite of two continuous functions is continuous, just noting that δ depends on ε only.

(10) If not, there is a sequence $\{x_n\}$ in A such that $|f(x_n)| \ge n$. As A is bounded, by Bolzano-Weierstrass, by passing to a subsequence if nec, we may assume $x_n \to x^*$ for some x^* (not nec in A). Then $\{x_n\}$ is a Cauchy sequence. Now, by assumption f is uniformly continuous, for $\varepsilon = 1$, there is some δ such that |f(x) - f(y)| < 1 whenever $|x - y| < \delta$. As $\{x_n\}$ is a Cauchy sequence, $|x_n - x_m| < \delta$ for all $n, m \ge n_0$. But then

$$n \le |f(x_n)| \le |f(x_n) - f(x_{n_0})| + |f(x_{n_0})| \le 1 + |f(x_{n_0})|,$$

which is impossible for large n. Hence, f must be bounded.

(15) (c) An example is the linear function f(x) = x. Clearly it is Lipschitz continuous, but x^2 is not.

Section 5.6

(3) It is clear that both functions are strictly increasing everywhere. Their product h(x) = x(x-1) satisfies h(0) = h(1) = 0 so it cannot be increasing on [0, 1]. Indeed, if h is increasing, it implies that h is the constant zero function which is clearly ridiculous. In general, the product of two non-negative, increasing functions is increasing.

(4) Let f and g be two positive, increasing function and let x < y be two points in their domain of definition. Then,

$$(fg)(x) - (fg)(y) = f(x)g(x) - f(y)g(y) = (f(x) - f(y))g(x) + f(y)(g(x) - g(y)) \le 0,$$

so fg is increasing.

Supplementary Problems

1. Let function f on E satisfy the condition: There is some constant C and $\alpha > 0$ such that $|f(x) - f(x_0)| \le C|x - x_0|^{\alpha}$ for all $x \in E$. (It is called Lipschitz continuous when $\alpha = 1$.) Show that f is uniformly continuous on E.

Solution Given $\varepsilon > 0$, take $\delta < (\varepsilon/C)^{1/\alpha}$ to get the job done.

2. Let f be a uniformly continuous function on $[0, \infty)$. Show that there is a constant C such that $|f(x)| \leq C_1 + C_2 x$.

Solution For $\varepsilon = 1$, there is some $\delta > 0$ such that |f(x) - f(y)| < 1 for $x, y, |x - y| \le \delta$. Decompose $[0, \infty)$ into $[(n - 1)\delta, n\delta], n \ge 1$. Let $C_0 = \sup_{x \in [0,1]} |f(x)|$. Then $|f(2\delta)| \le |f(2\delta) - f(\delta)| + |f(\delta)| \le 1 + C_0$. By induction we have $|f(n\delta)| \le C_0 + n$ for all n. Now, given x > 0, there is some n such that $(n - 1)\delta \le x < n\delta$, hence

$$|f(x)| \le |f((n-1)\delta)| + 1 \le C_0 + n - 1 + 1 \le C_0 + \frac{x}{\delta} + 1 \le C_1 + C_2 x ,$$

where $C_1 = C_0 + 1$ and $C_2 = 1/\delta$.

- 3. (Optional) Order the rational numbers in (0, 1) into a sequence $\{x_k\}$. Define a function on (0, 1) by $\varphi(x) = \sum 1/2^k$ where the summation is over all indices k such that $x_k < x$. Show that
 - (a) φ is strictly increasing and $\lim_{x\to 1^-} \varphi(x) = 1$.
 - (b) φ is discontinuous at each x_k .
 - (c) φ is continuous at each irrational number in (0, 1).

Solution A sketchy proof. (a) It is obvious that φ is strictly increasing and $\lim_{x\to 1^-} \varphi(x) = 1$ since $\sum_{k=1}^{\infty} 2^{-k} = 1$.

(b) Observe that $j_{\varphi}(x_k) \ge 2^{-k} > 0$.

(c) Given $\varepsilon > 0$, fix a large k_0 such that $\sum_{k=k_0+1}^{\infty} 2^{-k} < \varepsilon$. Let $z \in (0,1)$ be irrational. We can find a small δ such that $(z - \delta, z + \delta)$ does not contain any x_k with index $k \leq k_0$. Then for $x < y, x, y \in (z - \delta, z + \delta)$,

$$0 < \varphi(y) - \varphi(x) \le \sum_{k=k_0+1} 2^{-k} < \varepsilon ,$$

hence φ is continuous at z.

Note This example shows how complicated a monotone function could be.