MATH2050C Selected Solution to Assignment 12

Section 5.4 no. $3,4,6,7,8,10$, 15. Section 5.6 no 3,4 .

Section 5.4

(3) (a) $f(x)=x^{2}$ is not uniformly continuous on $[0, \infty)$. Pick $a_{n}=n$ and $b_{n}=n+1 / n$. Then $\left|a_{n}-b_{n}\right|=1 / n \rightarrow 0$ but $\left|f\left(a_{n}\right)-f\left(b_{n}\right)\right|=2+1 / n^{2}>2$.
Note. In general, any polynomial of degree ≥ 2 is not uniformly on any unbounded interval. (Of course, it is uc on every bounded interval.)
(b) $g(x)=\sin 1 / x$ on $(0, \infty)$. Pick $a_{n}=1 /(2 n \pi)$ and $b_{n}=1 /(2 n+1 / 2) \pi$. Then $\left|a_{n}-b_{n}\right| \rightarrow 0$ but $\left|\sin 1 / a_{n}-\sin 1 / b_{n}\right|=|0-1|=1$ for all n.
(4) Observing f is decreasing, on an interval of the form $I=[x, x+\delta], x \geq 0$, its oscillation is given by

$$
\operatorname{osc}_{I} f=\frac{1}{1+x^{2}}-\frac{1}{1+(x+\delta)^{2}}=\frac{2 \delta x+\delta^{2}}{\left(1+x^{2}\right)\left(1+(x+\delta)^{2}\right)} .
$$

For $\delta \leq 1$,

$$
\frac{2 \delta x+\delta^{2}}{\left(1+x^{2}\right)\left(1+(x+\delta)^{2}\right)} \leq \frac{2 \delta x+\delta^{2}}{1+x^{2}} \leq 2 \delta,
$$

as $2 x \leq 1+x^{2}$ and $\delta^{2} \leq h$. Hence given $\varepsilon>0$, pick $\delta=\min \{1, \varepsilon / 2\}$, we have $\operatorname{osc}_{f} \leq 2 \delta \leq \varepsilon$, on $[x, x+\delta], x \geq 0$. By the Oscillation Theorem f is uniformly continuous on $[0, \infty)$.
(6) Let f be bounded by M and g by K. Use

$$
|f(x) g(x)-f(y) g(y)|=|(f(x)-f(y)) g(x)+f(y)(g(x)-g(y))| \leq K|f(x)-f(y)|+M|g(x)-g(y)| .
$$

(7) The functions x and $\sin x$ are uniformly continuous on $(-\infty, \infty)$, but its product $h(x)=$ $x \sin x$ is not. Let $a_{n}=2 n \pi$ and $b_{n}=(2 n+1 / n) \pi$ so $\left|a_{n}-b_{n}\right| \rightarrow 0$. On the other hand,

$$
\frac{\sin \left(2 n \pi+\frac{1}{n} \pi\right)}{\pi / n}=\frac{\sin \frac{\pi}{n}}{\pi / n} \rightarrow 1, \quad \text { as } n \rightarrow \infty
$$

Thus,

$$
\left|b_{n} \sin b_{n}-a_{n} \sin a_{n}\right|=\left|b_{n} \sin b_{n}\right| \rightarrow 2 \pi^{2}, \quad \text { as } n \rightarrow \infty
$$

(8) Same as the proof of the composite of two continuous functions is continuous, just noting that δ depends on ε only.
(10) If not, there is a sequence $\left\{x_{n}\right\}$ in A such that $\left|f\left(x_{n}\right)\right| \geq n$. As A is bounded, by BolzanoWeierstrass, by passing to a subsequence if nec, we may assume $x_{n} \rightarrow x^{*}$ for some x^{*} (not nec in A). Then $\left\{x_{n}\right\}$ is a Cauchy sequence. Now, by assumption f is uniformly continuous, for $\varepsilon=1$, there is some δ such that $|f(x)-f(y)|<1$ whenever $|x-y|<\delta$. As $\left\{x_{n}\right\}$ is a Cauchy sequence, $\left|x_{n}-x_{m}\right|<\delta$ for all $n, m \geq n_{0}$. But then

$$
n \leq\left|f\left(x_{n}\right)\right| \leq\left|f\left(x_{n}\right)-f\left(x_{n_{0}}\right)\right|+\left|f\left(x_{n_{0}}\right)\right| \leq 1+\left|f\left(x_{n_{0}}\right)\right|,
$$

which is impossible for large n. Hence, f must be bounded.
(15) (c) An example is the linear function $f(x)=x$. Clearly it is Lipschitz continuous, but x^{2} is not.

Section 5.6

(3) It is clear that both functions are strictly increasing everywhere. Their product $h(x)=$ $x(x-1)$ satisfies $h(0)=h(1)=0$ so it cannot be increasing on [0,1]. Indeed, if h is increasing, it implies that h is the constant zero function which is clearly ridiculous. In general, the product of two non-negative, increasing functions is increasing.
(4) Let f and g be two positive, increasing function and let $x<y$ be two points in their domain of definition. Then,

$$
(f g)(x)-(f g)(y)=f(x) g(x)-f(y) g(y)=(f(x)-f(y)) g(x)+f(y)(g(x)-g(y)) \leq 0,
$$

so $f g$ is increasing.

Supplementary Problems

1. Let function f on E satisfy the condition: There is some constant C and $\alpha>0$ such that $\left|f(x)-f\left(x_{0}\right)\right| \leq C\left|x-x_{0}\right|^{\alpha}$ for all $x \in E$. (It is called Lipschitz continuous when $\alpha=1$.) Show that f is uniformly continuous on E.

Solution Given $\varepsilon>0$, take $\delta<(\varepsilon / C)^{1 / \alpha}$ to get the job done.
2. Let f be a uniformly continuous function on $[0, \infty)$. Show that there is a constant C such that $|f(x)| \leq C_{1}+C_{2} x$.

Solution For $\varepsilon=1$, there is some $\delta>0$ such that $|f(x)-f(y)|<1$ for $x, y,|x-y| \leq \delta$. Decompose $[0, \infty)$ into $[(n-1) \delta, n \delta], n \geq 1$. Let $C_{0}=\sup _{x \in[0,1]}|f(x)|$. Then $|f(2 \delta)| \leq$ $|f(2 \delta)-f(\delta)|+|f(\delta)| \leq 1+C_{0}$. By induction we have $|f(n \delta)| \leq C_{0}+n$ for all n. Now, given $x>0$, there is some n such that $(n-1) \delta \leq x<n \delta$, hence

$$
|f(x)| \leq|f((n-1) \delta)|+1 \leq C_{0}+n-1+1 \leq C_{0}+\frac{x}{\delta}+1 \leq C_{1}+C_{2} x
$$

where $C_{1}=C_{0}+1$ and $C_{2}=1 / \delta$.
3. (Optional) Order the rational numbers in $(0,1)$ into a sequence $\left\{x_{k}\right\}$. Define a function on $(0,1)$ by $\varphi(x)=\sum 1 / 2^{k}$ where the summation is over all indices k such that $x_{k}<x$. Show that
(a) φ is strictly increasing and $\lim _{x \rightarrow 1^{-}} \varphi(x)=1$.
(b) φ is discontinuous at each x_{k}.
(c) φ is continuous at each irrational number in $(0,1)$.

Solution A sketchy proof. (a) It is obvious that φ is strictly increasing and $\lim _{x \rightarrow 1^{-}} \varphi(x)=$ 1 since $\sum_{k=1}^{\infty} 2^{-k}=1$.
(b) Observe that $j_{\varphi}\left(x_{k}\right) \geq 2^{-k}>0$.
(c) Given $\varepsilon>0$, fix a large k_{0} such that $\sum_{k=k_{0}+1}^{\infty} 2^{-k}<\varepsilon$. Let $z \in(0,1)$ be irrational. We can find a small δ such that $(z-\delta, z+\delta)$ does not contain any x_{k} with index $k \leq k_{0}$. Then for $x<y, x, y \in(z-\delta, z+\delta)$,

$$
0<\varphi(y)-\varphi(x) \leq \sum_{k=k_{0}+1} 2^{-k}<\varepsilon
$$

hence φ is continuous at z.
Note This example shows how complicated a monotone function could be.

