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Section 5.4 no. 3, 4, 6, 7, 8, 10, 15. Section 5.6 no 3,4.

Section 5.4

(3) (a) f(x) = x2 is not uniformly continuous on [0,∞). Pick an = n and bn = n + 1/n. Then
|an − bn| = 1/n→ 0 but |f(an)− f(bn)| = 2 + 1/n2 > 2.

Note. In general, any polynomial of degree ≥ 2 is not uniformly on any unbounded interval. (Of
course, it is uc on every bounded interval.)

(b) g(x) = sin 1/x on (0,∞). Pick an = 1/(2nπ) and bn = 1/(2n + 1/2)π. Then |an − bn| → 0
but | sin 1/an − sin 1/bn| = |0− 1| = 1 for all n.

(4) Observing f is decreasing, on an interval of the form I = [x, x + δ], x ≥ 0, its oscillation is
given by

oscIf =
1

1 + x2
− 1

1 + (x+ δ)2
=

2δx+ δ2

(1 + x2)(1 + (x+ δ)2)
.

For δ ≤ 1,
2δx+ δ2

(1 + x2)(1 + (x+ δ)2)
≤ 2δx+ δ2

1 + x2
≤ 2δ ,

as 2x ≤ 1 + x2 and δ2 ≤ h. Hence given ε > 0, pick δ = min{1, ε/2}, we have oscf ≤ 2δ ≤ ε ,
on [x, x+ δ], x ≥ 0. By the Oscillation Theorem f is uniformly continuous on [0,∞).

(6) Let f be bounded by M and g by K. Use

|f(x)g(x)−f(y)g(y)| = |(f(x)−f(y))g(x)+f(y)(g(x)−g(y))| ≤ K|f(x)−f(y)|+M |g(x)−g(y)| .

(7) The functions x and sinx are uniformly continuous on (−∞,∞), but its product h(x) =
x sinx is not. Let an = 2nπ and bn = (2n+ 1/n)π so |an − bn| → 0. On the other hand,

sin

(
2nπ +

1

n
π

)
π/n

=
sin

π

n
π/n

→ 1 , as n→∞ .

Thus,
|bn sin bn − an sin an| = |bn sin bn| → 2π2 , as n→∞.

(8) Same as the proof of the composite of two continuous functions is continuous, just noting
that δ depends on ε only.

(10) If not, there is a sequence {xn} in A such that |f(xn)| ≥ n. As A is bounded, by Bolzano-
Weierstrass, by passing to a subsequence if nec, we may assume xn → x∗ for some x∗ (not nec
in A). Then {xn} is a Cauchy sequence. Now, by assumption f is uniformly continuous, for
ε = 1, there is some δ such that |f(x) − f(y)| < 1 whenever |x − y| < δ. As {xn} is a Cauchy
sequence, |xn − xm| < δ for all n,m ≥ n0. But then

n ≤ |f(xn)| ≤ |f(xn)− f(xn0)|+ |f(xn0)| ≤ 1 + |f(xn0)| ,
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which is impossible for large n. Hence, f must be bounded.

(15) (c) An example is the linear function f(x) = x. Clearly it is Lipschitz continuous, but x2

is not.

Section 5.6

(3) It is clear that both functions are strictly increasing everywhere. Their product h(x) =
x(x−1) satisfies h(0) = h(1) = 0 so it cannot be increasing on [0, 1]. Indeed, if h is increasing, it
implies that h is the constant zero function which is clearly ridiculous. In general, the product
of two non-negative, increasing functions is increasing.

(4) Let f and g be two positive, increasing function and let x < y be two points in their domain
of definition. Then,

(fg)(x)− (fg)(y) = f(x)g(x)− f(y)g(y) = (f(x)− f(y))g(x) + f(y)(g(x)− g(y)) ≤ 0 ,

so fg is increasing.

Supplementary Problems

1. Let function f on E satisfy the condition: There is some constant C and α > 0 such that
|f(x)− f(x0)| ≤ C|x− x0|α for all x ∈ E. (It is called Lipschitz continuous when α = 1.)
Show that f is uniformly continuous on E.

Solution Given ε > 0, take δ < (ε/C)1/α to get the job done.

2. Let f be a uniformly continuous function on [0,∞). Show that there is a constant C such
that |f(x)| ≤ C1 + C2x.

Solution For ε = 1, there is some δ > 0 such that |f(x) − f(y)| < 1 for x, y, |x − y| ≤ δ.
Decompose [0,∞) into [(n − 1)δ, nδ], n ≥ 1. Let C0 = supx∈[0,1] |f(x)|. Then |f(2δ)| ≤
|f(2δ) − f(δ)| + |f(δ)| ≤ 1 + C0. By induction we have |f(nδ)| ≤ C0 + n for all n. Now,
given x > 0, there is some n such that (n− 1)δ ≤ x < nδ, hence

|f(x)| ≤ |f((n− 1)δ)|+ 1 ≤ C0 + n− 1 + 1 ≤ C0 +
x

δ
+ 1 ≤ C1 + C2x ,

where C1 = C0 + 1 and C2 = 1/δ.

3. (Optional) Order the rational numbers in (0, 1) into a sequence {xk}. Define a function
on (0, 1) by ϕ(x) =

∑
1/2k where the summation is over all indices k such that xk < x.

Show that

(a) ϕ is strictly increasing and limx→1− ϕ(x) = 1.

(b) ϕ is discontinuous at each xk.

(c) ϕ is continuous at each irrational number in (0, 1).
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Solution A sketchy proof. (a) It is obvious that ϕ is strictly increasing and limx→1− ϕ(x) =
1 since

∑∞
k=1 2−k = 1.

(b) Observe that jϕ(xk) ≥ 2−k > 0.

(c) Given ε > 0, fix a large k0 such that
∑∞

k=k0+1 2−k < ε. Let z ∈ (0, 1) be irrational.
We can find a small δ such that (z − δ, z + δ) does not contain any xk with index k ≤ k0.
Then for x < y, x, y ∈ (z − δ, z + δ),

0 < ϕ(y)− ϕ(x) ≤
∑

k=k0+1

2−k < ε ,

hence ϕ is continuous at z.

Note This example shows how complicated a monotone function could be.


